기본 콘텐츠로 건너뛰기

1st week of december

Féret, J.B. et al., 2019. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sensing of Environment, 231.
Physical model has more ability to generalize itself then empirical or statistical models. But the calibration and the inversion algorithm can be essential and complicated step.

댓글

이 블로그의 인기 게시물

AGU 2019

4th week of june

Asner, G. P., Martin, R. E., Anderson, C. B., & Knapp, D. E. (2015). Quantifying forest canopy traits: Imaging spectroscopy versus field survey.  Remote Sensing of Environment ,  158 , 15-27. They use canopy sunlit reflectance at plot level and the trait samples from sunlit. The plot averaged refletance minimize canopy architectural effect. However actual field samples cover only 5% of a plot, the plot reflectance well explains canopy traits.

1st Week of August

Jacquemoud, S., et al. "Estimating leaf biochemistry using the PROSPECT leaf optical properties model."  Remote sensing of environment  56.3 (1996): 194-202. Leaf reflectance is affected by leaf biochemicals as well as by pigments or water. Inspecting NIR reflectance, N which is highly correlated to protein and C which are highly correlated to  cellulose and lignin  can be detected.