기본 콘텐츠로 건너뛰기

1st week of July

 

Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing39(7), 1491-1507.
In this paper, the author uses vegetation index as a merit function. The method is more stable than using all channels. Integrating empirical method, physics based model inversion could be improved. 

댓글

이 블로그의 인기 게시물

AGU 2019

4th week of june

Asner, G. P., Martin, R. E., Anderson, C. B., & Knapp, D. E. (2015). Quantifying forest canopy traits: Imaging spectroscopy versus field survey.  Remote Sensing of Environment ,  158 , 15-27. They use canopy sunlit reflectance at plot level and the trait samples from sunlit. The plot averaged refletance minimize canopy architectural effect. However actual field samples cover only 5% of a plot, the plot reflectance well explains canopy traits.

1st Week of August

Jacquemoud, S., et al. "Estimating leaf biochemistry using the PROSPECT leaf optical properties model."  Remote sensing of environment  56.3 (1996): 194-202. Leaf reflectance is affected by leaf biochemicals as well as by pigments or water. Inspecting NIR reflectance, N which is highly correlated to protein and C which are highly correlated to  cellulose and lignin  can be detected.